NUMERICAL EVALUATION OF SOME TRIGONOMETRIC SERIES

W. McLEAN

ABSTRACT. We present a method for the accurate numerical evaluation of a family of trigonometric series arising in the design of special-purpose quadrature rules for boundary element methods. The series converge rather slowly, but can be expressed in terms of Fourier-Chebyshev series that converge rapidly.

Let r be a positive integer, and define the functions G_r and H_r by

$$G_r(t) = 2 \sum_{m=1}^{\infty} \frac{1}{m^r} \cos 2\pi mt,$$

$$H_r(t) = 2 \sum_{m=1}^{\infty} \frac{1}{m^r} \sin 2\pi mt.$$

This note describes an efficient method for evaluating G_r and H_r to high accuracy. When r is small, direct evaluation of the trigonometric series is impractical because they converge too slowly.

The author's interest in G_r and H_r stems from their role in the analysis and design of numerical integration techniques for boundary element methods. That application leads to systems of nonlinear equations involving G_r and H_r (for small values of r), the solutions of which yield the weights and integration points of nonstandard, Gauss-like rules. See Chandler and Sloan [4, §5] or the survey article [11, §7] for a particularly simple example, where the integration points are the solutions of just a single equation, $G_r(t) = 0$. Brown et al. [3] discuss some important analytical properties of G_r and H_r .

Other authors have considered the numerical evaluation of certain closely related trigonometric series, arising from plate contact problems. For some methods quite different from the one presented here, see Boersma and Dempsey [2] and papers cited therein.

To evaluate G_r and H_r , it suffices to evaluate

$$C_r(t) = -2\sum_{m=1}^{\infty} \frac{1}{m^r} \cos(2\pi mt - r\pi/2),$$

$$S_r(t) = -2\sum_{m=1}^{\infty} \frac{1}{m^r} \sin(2\pi mt - r\pi/2),$$

Received by the editor May 17, 1993.

1991 Mathematics Subject Classification. Primary 42-04, 41A10, 65N38, 65D32.

©1994 American Mathematical Society 0025-5718/94 \$1.00 + \$.25 per page

The author was supported by the Australian Research Council.

because for $k \ge 1$,

$$\begin{aligned} G_{2k-1}(t) &= (-1)^{k+1} S_{2k-1}(t) \,, \qquad G_{2k}(t) &= (-1)^{k+1} C_{2k}(t) \,, \\ H_{2k-1}(t) &= (-1)^k C_{2k-1}(t) \,, \qquad H_{2k}(t) &= (-1)^{k+1} S_{2k}(t) \,. \end{aligned}$$

We shall work with C_r and S_r instead of with G_r and H_r because the relations

(1)
$$C'_r(t) = 2\pi C_{r-1}(t)$$
 and $S'_r(t) = 2\pi S_{r-1}(t)$

are more convenient than the corresponding ones involving G'_r , H'_r , G_{r-1} , and H_{r-1} .

An elementary calculation reveals that

$$C_1(t) = 2\pi(t - \frac{1}{2})$$
 for $0 < t < 1$,

so for all $r \ge 1$ the restriction of C_r to the unit interval is just a polynomial of degree r. In fact,

$$C_r(t) = \frac{(2\pi)^r}{r!} B_r(t)$$
 for $0 < t < 1$,

where B_r is the Bernoulli polynomial of degree r; cf. [1, p. 805]. Thus, numerical evaluation of H_1 , G_2 , H_3 , G_4 , ... presents no difficulties, but dealing with the remaining cases G_1 , H_2 , G_3 , H_4 , ... requires an efficient method of computing S_r . When r = 1 there is a convenient, closed form,

(2)
$$S_1(t) = -2 \log |2 \sin \pi t|;$$

however, in general, S_r is a rescaled version of the Clausen function of order r:

$$S_r(t) = (-1)^{k+1} 2 \operatorname{Cl}_r(2\pi t)$$
 for $r = 2k - 1$ or $2k$,

following the notation of Lewin [9]. Our strategy for computing S_2 , S_3 , ... uses (2) and the second formula in (1).

In order to split S_r into a sum of singular and regular terms, we define a function Φ_r on the interval [-1, 1], by writing

(3)
$$S_r(t) = -2\frac{(2\pi)^{r-1}}{(r-1)!}[t^{r-1}\log t + (-1)^{r-1}(1-t)^{r-1}\log(1-t)] + \Phi_r(2t-1)$$

for 0 < t < 1. The problem now reduces to evaluating Φ_r . When r = 1, the closed form (2) implies that

(4)
$$\Phi_1(x) = \begin{cases} -2\log\frac{8\cos(\pi x/2)}{1-x^2} & \text{if } -1 < x < 1, \\ -2\log 2\pi & \text{if } x = \pm 1, \end{cases}$$

and by differentiating (3) and using (1), we find that

(5)
$$\Phi'_{r}(x) = \pi[\Phi_{r-1}(x) + Q_{r-2}(x)] \text{ for } r \ge 2,$$

where

$$Q_r(x) = 2 \frac{\pi^r}{(r+1)!} [(1+x)^r + (-1)^r (1-x)^r] \text{ for } r \ge 0.$$

We generate Φ_2 , Φ_3 , Φ_4 , ... by repeated integration of Φ_1 , using the formula (5). The constants of integration follow from the relation

(6)
$$\int_0^1 S_r(t) \, dt = 0 \quad \text{for } r \ge 1 \,,$$

272

and the numerical calculations are easily performed using the method of Clenshaw and Curtis [6], as we now demonstrate.

Let T_k denote the first-kind Chebyshev polynomial of degree k, i.e.,

$$T_k(\cos\theta) = \cos k\theta$$

and put

$$a_{rk} = \frac{2}{\pi} \int_{-1}^{1} \frac{\Phi_r(x) T_k(x)}{\sqrt{1 - x^2}} \, dx \quad \text{for } k \ge 0 \,,$$

so that

(7)
$$\Phi_r(x) = \sum_{k=0}^{\infty} a_{rk} T_k(x) = \frac{a_{r0}}{2} T_0(x) + \sum_{k=1}^{\infty} a_{rk} T_k(x).$$

(The prime on the summation sign indicates that the coefficient of $T_0(x)$ is multiplied by 1/2.) We see from (4) that Φ_1 , and hence Φ_r for all $r \ge 1$, has an analytic continuation to the strip -3 < Re z < 3. In particular, if

$$1 < \rho < 3 + 2\sqrt{2}$$

then Φ_r is analytic inside and on the ellipse $\{(z + z^{-1})/2 : |z| = \rho\}$, and therefore

(8)
$$|a_{rk}| \leq \frac{\operatorname{const}_{r,\rho}}{\rho^k} \text{ for } k \geq 0;$$

see Rivlin [10, p. 143]. This estimate shows that the series (7) converges rapidly, and so is suitable for numerical evaluation of Φ_r . Another attractive feature of the representation (7) is that, because of the parity properties

$$S_r(1-t) = (-1)^{r+1} S_r(t), \quad \Phi_r(-x) = (-1)^{r+1} \Phi_r(x), \quad Q_r(-x) = (-1)^r Q_r(x),$$

half of the coefficients vanish:

$$a_{rk} = 0$$
 if r is $\begin{cases} even \\ odd \end{cases}$ and k is $\begin{cases} even \\ odd \end{cases}$.

Thus, Φ_r can be evaluated using standard methods for the summation of even and odd Fourier-Chebyshev series; see, e.g., Clenshaw [5, pp. 9–10]. We shall also require the expansion

$$Q_r(x) = \sum_{k=0}^{\infty} b_{rk} T_k(x) = \sum_{k=0}^{r} b_{rk} T_k(x),$$

in which $b_{rk} = 0$ for k > r because Q_r is a polynomial of degree r.

To compute a_{rk} when r = 1, we apply Gauss-Chebyshev quadrature, defining

$$a_{1k}^{(N)} = \frac{2}{N} \sum_{n=1}^{N} \Phi_1(x_n^{(N)}) T_k(x_n^{(N)}) \text{ where } x_n^{(N)} = \cos \frac{(2n-1)\pi}{2N},$$

and using the explicit formula (4) for Φ_1 . By [10, equation (3.58)],

$$a_{1k}^{(N)} = a_{1k} + \sum_{p=1}^{\infty} (-1)^p (a_{1,2pN-k} + a_{1,2pN+k})$$
 for $0 \le k < N$,

so the estimate (8) implies that

$$|a_{1k}^{(N)} - a_{1k}| \le \frac{\operatorname{const}_{\rho}}{\rho^{2N-k}} \quad \text{for } N > k \ge 0.$$

It follows from (5) that the Chebyshev coefficients of Φ_r , Φ_{r-1} , and Q_{r-2} satisfy

$$a_{rk} = \frac{\pi}{2k} [a_{r-1,k-1} + b_{r-2,k-1} - a_{r-1,k+1} - b_{r-2,k+1}] \text{ for } k \ge 1 \text{ and } r \ge 2;$$

cf. [5] or [6] or [7, p. 59]. The case k = 0 is handled by observing that (3) and (6) imply

$$a_{r0} = \begin{cases} 0 & \text{if } r \text{ is even,} \\ -\frac{8}{r} \frac{(2\pi)^{r-1}}{r!} + 2\sum_{k=1}^{\infty} \frac{a_{r,2k}}{4k^2 - 1} & \text{if } r \text{ is odd.} \end{cases}$$

The coefficients b_{rk} can be evaluated in closed form: after using the parity property $T_k(-x) = (-1)^k T_k(x)$ and the substitution $x = \cos \theta$, we find with the help of Gradshteyn and Ryzhik [8, p. 372, formula 9] that

$$b_{rk} = \pi^r \, \frac{1 + (-1)^{r+k}}{2^{r-2}} \frac{(2r)!}{(r+1)!(r+k)!(r-k)!} \quad \text{for } 0 \le k \le r \, .$$

TABLE 1.	Chebyshev	coefficients of	Φ_r	for	$1 \le r \le 6$

k	a_{1k}			a_{3k}			a_{5k}		
0	-7.83870	74961	83803	-14.38120	33723	33972	-15.40706	80937	28069
2	0.24152	87859	01736	4.73732	65271	83045	7.63161	01374	83021
4	0.00203	43769	84711	0.04899	74836	10452	2.14176	52620	83497
6	0.00003	56715	82236	0.00016	23361	08813	0.00400	70818	86336
8	0.00000	07625	83158	0.00000	15125	91966	0.00000	70348	52906
10	0.00000	00177	75559	0.00000	00200	30349	0.00000	00404	77246
12	0.00000	00004	34569	0.00000	00003	17445	0.00000	00003	63550
14	0.00000	00000	10952	0.00000	00000	05618	0.00000	00000	04163
16	0.00000	00000	00282	0.00000	00000	00107	0.00000	00000	00056
18	0.00000	00000	00007	0.00000	00000	00002	0.00000	00000	00001
$\frac{1}{k}$	a_{2k}								
1	-0.12603	48571	75644	-4.19275	26396	29885	-9.41234	87210	83799
3	0.12539	89792	71593	4.17737	42734	99876	8.61234	51447	07814
5	0.00062	79118	20911	0.01534	20140	62813	0.79910	47413	99756
7	0.00000	78335	61075	0.00003	60887	12789	0.00089	76084	55303
9	0.00000	01299	93449	0.00000	02605	01145	0.00000	12207	48844
11	0.00000	00024	76288	0.00000	00028	14996	0.00000	00057	28222
13	0.00000	00000	51186	0.00000	00000	37678	0.00000	00000	43425
15	0.00000	00000	01117	0.00000	00000	00577	0.00000	00000	00430
17	0.00000	00000	00025	0.00000	00000	00010	0.00000	00000	00005
19	0.00000	00000	00001	0.00000	00000	00000	0.00000	00000	00000

NUMERICAL EVALUATION OF SOME TRIGONOMETRIC SERIES

Table 1 lists the nonzero coefficients a_{rk} for $1 \le r \le 6$. The calculations were performed as described above in 25-digit, decimal arithmetic using MAPLE, and the results then rounded to 15 decimal places. In the case r = 1, the coefficients were obtained by computing $a_{1k}^{(N)}$ with N = 24. From the behavior of $a_{1k}^{(N)}$ for N in the range $k < N \le 30$, our values of a_{1k} appeared correct to about the 22nd decimal place before being rounded.

ACKNOWLEDGMENT

The author wishes to thank the referee for suggesting a number of improvements to the original manuscript.

BIBLIOGRAPHY

- 1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Ninth Printing, Dover, New York, 1970.
- 2. J. Boersma and J. P. Dempsey, On the numerical evaluation of Legendre's chi-function, Math. Comp. 59 (1992), 157-163.
- 3. G. Brown, G. A. Chandler, I. H. Sloan, and D. C. Wilson, *Properties of certain trigonometric series arising in numerical analysis*, J. Math. Anal. Appl. 162 (1991), 371-380.
- 4. G. A. Chandler and I. H. Sloan, Spline qualocation methods for boundary integral equations, Numer. Math. 58 (1990), 537-567.
- 5. C. W. Clenshaw, *Chebyshev series for mathematical functions*, Mathematical Tables 5, National Physical Laboratory, 1963.
- 6. C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic computer, Numer. Math. 2 (1960), 197-205.
- 7. L. Fox and I. B. Parker, *Chebyshev polynomials in numerical analysis*, Oxford Univ. Press, Oxford, 1968.
- 8. I. S. Gradsteyn and I. M. Ryzhik, *Table of integrals, series, and products*, Academic Press, New York, 1965.
- 9. L. Lewin, Dilogarithms and associated functions, Macdonald, London, 1958.
- 10. T. J. Rivlin, The Chebyshev polynomials, Wiley, New York, 1974.
- 11. I. H. Sloan, Error analysis of boundary integral methods, Acta Numerica 1 (1992), 287-339.

School of Mathematics, University of New South Wales, Kensington NSW 2033, Australia

E-mail address: W.McLeanQunsw.edu.au