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NUMERICAL EVALUATION OF SOME TRIGONOMETRIC SERIES 

W. McLEAN 

ABSTRACT. We present a method for the accurate numerical evaluation of a 
family of trigonometric series arising in the design of special-purpose quadrature 
rules for boundary element methods. The series converge rather slowly, but can 
be expressed in terms of Fourier-Chebyshev series that converge rapidly. 

Let r be a positive integer, and define the functions Gr and Hr by 

Gr(t) = 2 E: r cos 2rmt, 
m=1 

0.0 

Hr(t) = 2 E r sin 2rmt. 
m=1 

This note describes an efficient method for evaluating Gr and Hr to high accu- 
racy. When r is small, direct evaluation of the trigonometric series is imprac- 
tical because they converge too slowly. 

The author's interest in Gr and Hr stems from their role in the analysis 
and design of numerical integration techniques for boundary element methods. 
That application leads to systems of nonlinear equations involving Gr and Hr 
(for small values of r ), the solutions of which yield the weights and integration 
points of nonstandard, Gauss-like rules. See Chandler and Sloan [4, ?5] or the 
survey article [11, ?7] for a particularly simple example, where the integration 
points are the solutions of just a single equation, Gr(t) = 0. Brown et al. [3] 
discuss some important analytical properties of Gr and Hr. 

Other authors have considered the numerical evaluation of certain closely 
related trigonometric series, arising from plate contact problems. For some 
methods quite different from the one presented here, see Boersma and Dempsey 
[2] and papers cited therein. 

To evaluate Gr and Hr, it suffices to evaluate 

Cr(t) = -2 E r cos(27rmt - r7z/2), 
m=l 

Sr(t) = -2 E sin(27rmt - r7z/2), 
m=1 
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because for k > 1, 

G2k- I(t) = (1)k+l S2k- (t), G2k (t) = (1)k+l C2k (t), 
H2k-1 (t) = ()kC2k- (t), H2k (t) = ()k+1S2k (t) - 

We shall work with Cr and Sr instead of with Gr and Hr because the relations 

(1) C;(t) = 27rCr,I(t) and S,(t) = 27rSr_I(t) 

are more convenient than the corresponding ones involving G., Hr, Gr 1, 
and Hr-i. 

An elementary calculation reveals that 

Cl(t) = 27r(t- 2) for 0 < t < 1, 

so for all r > 1 the restriction of Cr to the unit interval is just a polynomial 
of degree r. In fact, 

Cr(t)- (!)BrB(t) for 0 < t < 1 

where Br is the Bernoulli polynomial of degree r; cf. [1, p. 805]. Thus, numer- 
ical evaluation of H1 , G2, H3, G4, ... presents no difficulties, but dealing 
with the remaining cases G1 , H2, G3, H4, ... requires an efficient method 
of computing Sr. When r = 1 there is a convenient, closed form, 

(2) S1 (t) = -2 log 12 sin 7rtl; 

however, in general, Sr is a rescaled version of the Clausen function of order r: 

Sr(t) = (_ 1)k+l2 Clr(27rt) for r = 2k - 1 or 2k, 

following the notation of Lewin [9]. Our strategy for computing S2, S3, ... 

uses (2) and the second formula in (1). 
In order to split Sr into a sum of singular and regular terms, we define a 

function (Dr on the interval [-1, 1], by writing 

(2 7)r-I 
(3) Sr(t) =-2 (r - 1)! [tr-I logt + (_1)r-I(1 - t)r- log(l - t)] + (Dr(2t - 1) 

for 0 < t < 1. The problem now reduces to evaluating (Dr. When r = 1, the 
closed form (2) implies that 

( 21 8cos(7rx/2) if -1 < x< 1, 
(4) FD1(x) =t 2o 1 -x2 

-21og2nz if x=+1, 

and by differentiating (3) and using (1), we find that 

(5) ?Dr(x) = [(Dr-I(X) + Qr-2(X)] for r > 2, 

where 

(rX)2 
[(1 + X)r + (-1)r(l_X)r] for r > 0. 

We generate (D2, 5D3, 5D4, ... by repeated integration of DI, using the 
formula (5). The constants of integration follow from the relation 

1 

(6) /Sr(t) dt = O for r > 1,5 
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and the numerical calculations are easily performed using the method of Clen- 
shaw and Curtis [6], as we now demonstrate. 

Let Tk denote the first-kind Chebyshev polynomial of degree k, i.e., 

Tk(cos6) = cosk6, 

and put 
2 I" (Dr(X)Tk (X) 

ark - - dx for k >, 

so that 
00 00 

(7) (Dr(X) = Z'arkTk(x) = ar To(x) + arkTk(X) 
k=O k=i 

(The prime on the summation sign indicates that the coefficient of To(x) is 
multiplied by 1/2.) We see from (4) that (I , and hence (Dr for all r > 1, 
has an analytic continuation to the strip -3 < Re z < 3. In particular, if 

1 < p < 3 + 22, 

then (Dr is analytic inside and on the ellipse { (z + z)/2 Izi = P }, and 
therefore 

(8) larklI < cosr P for k > O; 
p 

see Rivlin [10, p. 143]. This estimate shows that the series (7) converges rapidly, 
and so is suitable for numerical evaluation of (Dr. Another attractive feature 
of the representation (7) is that, because of the parity properties 

Sr(l - t) = (-1)r+lSr(t) , (Dr-X) = (-j)r+l(Dr(X) Qr(-X) = (-1)rQr(X), 

half of the coefficients vanish: 

-0 f iseyen feven~ ark = 0 if r is {odd }and k is odd} 

Thus, (Dr can be evaluated using standard methods for the summation of even 
and odd Fourier-Chebyshev series; see, e.g., Clenshaw [5, pp. 9-10]. We shall 
also require the expansion 

00 r 
Qr(X) brkTk(X)= brkTk(X), 

k=O k=O 

in which brk = 0 for k > r because Qr is a polynomial of degree r. 
To compute ark when r = 1 , we apply Gauss-Chebyshev quadrature, defin- 

ing 

a(k) = E DI (x k(XN)) where X(N) = cos alkn n2N 

and using the explicit formula (4) for (D . By [10, equation (3.58)], 
00 

alk = alk + j-)P(aI,2pNk + al,2pN+k) for 0 < k < NX 
p=l 
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so the estimate (8) implies that 

|(N)- cons< 'N for N > k > O. 

It follows from (5) that the Chebyshev coefficients of (r, (F,-1, and Qr-2 

satisfy 

ark = -[ar-l,k-1 + r-2,k- 1 r-l,k+l -br-2,k+1] for k > 1 and r > 2; 

cf. [5] or [6] or [7, p. 59]. The case k = 0 is handled by observing that (3) and 
(6) imply 

= 
O if r is even, 

arO t r r8 + 2 k 1 7 if r is odd. 

The coefficients brk can be evaluated in closed form: after using the parity 
property Tk(-x) = (- 1)k Tk(x) and the substitution x = cos 0, we find with 
the help of Gradshteyn and Ryzhik [8, p. 372, formula 9] that 

b= 7,r 1 + (- 1)r+k (2r)! 
brk 7 2r-2 (r+ 1)!(r+k)!(r-k)! for 0<k<r 

TABLE 1. Chebyshev coefficients of (Dr for 1 < r < 6 

k alk a3k a5k 

0 -7.83870 74961 83803 -14.38120 33723 33972 -15.40706 80937 28069 
2 0.24152 87859 01736 4.73732 65271 83045 7.63161 01374 83021 
4 0.00203 43769 84711 0.04899 74836 10452 2.14176 52620 83497 

6 0.00003 56715 82236 0.00016 23361 08813 0.00400 70818 86336 
8 0.00000 07625 83158 0.00000 15125 91966 0.00000 70348 52906 

10 0.00000 00177 75559 0.00000 00200 30349 0.00000 00404 77246 
12 0.00000 00004 34569 0.00000 00003 17445 0.00000 00003 63550 

14 0.00000 00000 10952 0.00000 00000 05618 0.00000 00000 04163 

16 0.00000 00000 00282 0.00000 00000 00107 0.00000 00000 00056 
18 0.00000 00000 00007 0.00000 00000 00002 0.00000 00000 00001 

k a2k a4k a6k 

1 -0.12603 48571 75644 -4.19275 26396 29885 -9.41234 87210 83799 

3 0.12539 89792 71593 4.17737 42734 99876 8.61234 51447 07814 

5 0.00062 79118 20911 0.01534 20140 62813 0.79910 47413 99756 
7 0.00000 78335 61075 0.00003 60887 12789 0.00089 76084 55303 
9 0.00000 01299 93449 0.00000 02605 01145 0.00000 12207 48844 

11 0.00000 00024 76288 0.00000 00028 14996 0.00000 00057 28222 
13 0.00000 00000 51186 0.00000 00000 37678 0.00000 00000 43425 
15 0.00000 00000 01117 0.00000 00000 00577 0.00000 00000 00430 

17 0.00000 00000 00025 0.00000 00000 00010 0.00000 00000 00005 
19 0.00000 00000 00001 0.00000 00000 00000 0.00000 00000 00000 
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Table 1 lists the nonzero coefficients ark for 1 < r < 6. The calcula- 
tions were performed as described above in 25-digit, decimal arithmetic using 
MAPLE, and the results then rounded to 15 decimal places. In the case r = 1, 
the coefficients were obtained by computing a(N) with N = 24. From the be- 1k 
havior of a(N) for N in the range k < N < 30, our values of alk appeared Ik 
correct to about the 22nd decimal place before being rounded. 
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